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Abstract

The general topological structure of the configuration space is described and the difficulties
associated with the geometrization attempt relying on the local coset space structure are de-
scribed. Also the physical and mathematical motivations for Diff4 invariance and -degeneracy
and Kähler property are explained in detail. The idea is that configuration space decomposes
into union ∪iG/Hi of coset spaces G/Hi such that G is a subgroup of Diff(δM4

+×CP2) and
Hi contains the subgroup of G whose action reduces to diffeomorphisms for given 3-surface
X3. Configuration space metric has also zero modes; part of them correspond to the genera-
tors of isometries invariant under complexification and part of them corresponds to isometry
invariants.

The basic motivation for the construction of configuration space geometry is the vision
that physics reduces to the geometry of classical spinor fields in the infinite-dimensional con-
figuration space of 3-surfaces of M4

+ × CP2. Hermitian conjugation is the basic operation in
quantum theory and its geometrization requires that configuration space possesses Kähler ge-
ometry. One of the basic features of the Kähler geometry is that geometry is solely determined
by the so called Kähler function.

The task of finding Kähler geometry for the configuration space reduces to that of finding
Kähler function. The main constraints on the Kähler function result from the requirement
of Diff4 symmetry and degeneracy. General coordinate invariance requires that the definition
of the Kähler function assigns to a given 3-surface X3 a unique space-time surface X4(X3),
the generalized Bohr orbit defining the classical physics associated with X3. The natural
guess is that Kähler function is defined by what might be called Kähler action, which is essen-
tially Maxwell action with Maxwell field expressible in terms of CP2 coordinates. Absolute
minimization is the most natural manner to fix X4(X3) uniquely.

The basic question is what distinguishes physically between X3 and other Diff4 3-surfaces
at X4 so that X3 defines X4 as absolute minimum. For H = M4

+ × CP2 the problem can
be settled. If Kähler action would define a strictly deterministic variational principle, Diff4

degeneracy and invariance would be achieved by restricting the consideration to 3-surfaces
Y 3 at the boundary of M4

+ and by defining Kähler function for 3-surfaces X3 at X4(Y 3) and
diffeo-related to Y 3 as K(X3) = K(Y 3). This reduction might be called quantum gravitational
holography. The classical non-determinism of Kähler action introduces complications, which
might be overcome by generalizing the notion of quantum gravitational holography.

It has however become clear that the gigantic symmetries associated with δM4
+ ×CP2 are

also symmetries at laboratory scale and that M4 is favored over M4
+. In this case X3 must be

selected uniquely by the internal geometry of X4. The possibility of negative Poincare energies
inspires the hypothesis that the total quantum numbers and classical conserved quantities of
the Universe vanish. This view is consistent with experimental facts if gravitational energy
is defined as a difference of Poincare energies of positive and negative energy matter. Space-
time surface consists of pairs of positive and negative energy space-time sheets created at some
moment from vacuum and branching at that moment. This allows to select X3 uniquely and
define X4(X3) as absolute minimum of Kähler action. This view is also consistent with the
non-determinism of Kähler action.

A complementary approach to the problem of constructing configuration space geometry
is based on symmetries. The work of Dan Freed has demonstrated that the Kähler geometry
of loop spaces is unique from the existence of Riemann connection and fixed completely by the
Kac Moody symmetries of the space. In 3-dimensional context one has even better reasons to
expect uniqueness. The guess is that configuration space is a union symmetric spaces labelled
by zero modes not appearing in the line element as differentials. The generalized conformal
invariance of metrically 2-dimensional light like 3-surfaces acting as causal determinants is the
corner stone of the construction. The construction works only for 4-dimensional space-time
and imbedding space which is a product of future light cone of four-dimensional Minkowski
space and CP2.

In this chapter a definition of the Kähler function is proposed and various physical and
mathematical motivations behind the proposed definition are discussed. The key feature of
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the Kähler action is classical non-determinism and various implications of the classical non-
determinism are discussed.

1 Introduction

The motivation the construction of configuration space geometry is that physics reduces to the
geometry of classical spinor fields in the the ”world of the classical worlds” identified as the infinite-
dimensional configuration space of 3-surfaces of M4

+×CP2 or M4×CP2, where M4 and M4
+ denote

Minkowski space and its light cone respectively.
Hermitian conjugation is the basic operation in quantum theory and its geometrization requires

that configuration space possesses Kähler geometry. One of the basic features of the Kähler
geometry is that it is solely determined by the so called Kähler function, which defines both the
Kähler form J and the components of the Kähler metric g in complex coordinates via the formulas
[16]

J = i∂k∂l̄Kdzk ∧ dz̄l ,

ds2 = 2∂k∂l̄Kdzkdz̄l . (1)

Kähler form is covariantly constant two-form and can be regarded as a representation of imaginary
unit in the tangent space of the configuration space

JmrJ
rn = −g n

m . (2)

As a consequence Kähler form defines also symplectic structure in configuration space.

1.1 Definition of Kähler function

The task of finding Kähler geometry for the configuration space reduces to that of finding Kähler
function. The main constraints on the Kähler function result from the requirement of Diff4 sym-
metry (general coordinate invariance) and degeneracy. General coordinate invariance requires that
the definition of the Kähler function assigns to a given 3-surface X3 a unique space-time surface
X4(X3), the generalized Bohr orbit defining the classical physics associated with X3. The natural
guess is that Kähler function is defined by what might be called Kähler action, which is essentially
Maxwell action with Maxwell field expressible in terms of CP2 coordinates. Absolute minimization
is the first guess for how to fix X4(X3) uniquely.

It has however become clear that this option might well imply that Kähler is negative and
infinite for the entire Universe so that the vacuum functional would be identically vanishing. I
ended up with a more attractive less global option from number theoretical vision [E2]. According
to this option the absolute value of the contribution to the Kähler aaction coming from each region
where the action density has definite sign is minimized separately. [E2]. As a consequence the
preferred extremals are as near to vacuum extremals as possible. For the dual of this principle
maximization of absolute value occurs instead of minimization.

If Kähler action would define a strictly deterministic variational principle, Diff4 degeneracy and
invariance would be achieved by restricting the consideration to 3-surfaces Y 3 at the boundary
of M4

+ and by defining Kähler function for 3-surfaces X3 at X4(Y 3) and diffeo-related to Y 3 as
K(X3) = K(Y 3). This reduction might be called quantum gravitational holography. The classical
non-determinism of the Kähler action however introduces complications which might be however
overcome by generalizing the notion of quantum gravitational holography.
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1.2 Minkowski space or its light cone?

For a long time I believed that the question ”M4
+ or M4?” had been settled in favor of M4

+. The
work with the conceptual problems related to energy and time, and with the symmetries of quantum
TGD, however led gradually to the realization that there are strong reasons for considering M4

instead of M4
+.

1. It has become clear that the gigantic symmetries associated with the δM4
+ × CP2 and more

general surfaces X3
l × CP2, X3

l light like 3-surface of M4 are also laboratory symmetries
visible directly at the level of propagators and vertices [C5]. X3

l could be restricted to be
a union of future and past directed light cone boundaries since arbitrary light like surfaces
X3

l contain singularities such as self intersections. Poincare invariance fits very elegantly
with the two types of super-conformal symmetries of TGD. The first conformal symmetry
corresponds to the light-like surfaces X3

l × CP2 of the imbedding space. More general light
like 7-surfaces are not favored because they do not possess the huge conformal symmetries of
X3

l ×CP2. Second conformal symmetry corresponds to light like boundaries of X4 and light-
like surfaces separating space-time regions with different signatures of the induced metric
and is identifiable as the counterpart of the Kac Moody symmetry of string models. A rather
plausible conclusion is that configuration space is a union of configuration spaces associated
with X3

l × CP2, with X3
l identified as unions of future and past directed light cones. Thus

the construction reduces to a high degree to a study of a simple special case δM4
+ × CP2.

2. The replacement of the energy momentum tensor by a collection of conserved currents means
that the sign of the energy depends on the time orientation of the space-time sheet. The
simplest theory results if one assumes that the net quantum numbers of physical states vanish.
Crossing symmetry guarantees consistency with elementary particle physics. A consistency
with the macroscopic physics results if gravitational energy is the difference of positive and
negative inertial (Poincare) energies of matter. This option allows also M4 and leads to a
fractal cosmology in which light like 7-surfaces of X3

l ×CP2 serve as causal determinants at
the level of the imbedding space.

3. There is however a conceptual hurdle involved. Suppose that X4 is the absolute minimum
associated with X3, and let Y 3 be some other Diff4 related 3-surface at X4. One cannot
require that the absolute minima X4(X3) and X4(Y 3) are same and one certainly cannot
assign an absolute minimum or more general preferred extremal to every 3-surface sepa-
rately since general coordinate invariance for 3-surfaces would imply that Kähler function
is infinitely many-valued. X4 can thus be an absolute minimum only for some preferred
3-surface X3(X4) at X4 and the question is what makes this 3-surface preferred.

4. It seems that the internal geometry of X4(X3) must be such that it defines uniquely X3(X4),
or perhaps even more generally, a light like causal determinant X3

l ×CP2 of H to which X3

belongs. If one requires that the net values of the conserved classical quantities are zero, one
could regard X4 as consisting of space-time sheets with opposite time orientation which are
created at some moment from vacuum and possibly also disappear to vacuum. If this is the
case then the 3-surface at which positive and negative energy space-time sheets are created
and begin to evolve as separate branches presents a natural candidate for X3. Also this view
is also consistent with quantum holography and supported strongly by number theoretical
considerations (M4 has an interpretation as quaternion space with Minkowski metric defined
as the real part of q2).
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1.3 Configuration space metric from symmetries

A complementary approach to the problem of constructing configuration space geometry is based
on symmetries. The work of Dan Freed has demonstrated that the Kähler geometry of loop spaces
is unique from the existence of Riemann connection and fixed completely by the Kac Moody sym-
metries of the space. In 3-dimensional context one has even better reasons to expect uniqueness.
The guess is that configuration space is a union symmetric spaces labelled by zero modes not ap-
pearing in the line element as differentials and having interpretations as classical degrees providing
a rigorous formulation of quantum measurement theory. The generalized conformal invariance of
metrically 2-dimensional light like 3-surfaces acting as causal determinants is the corner stone of
the construction. The construction works only for 4-dimensional space-time and imbedding space
which is a product of four-dimensional Minkowski space or its future light cone with CP2.

1.4 Is absolute minimization the correct variational principle?

One can criticize the assumption that extremals correspond to the absolute minima of Kähler
action. Any other principle allowing to assign to a given 3-surface a unique space-time surface in
principle must in principle be considered as a viable alternative. The number theoretical vision
discussed in [E2] indeed favors the separate minimization of magnitudes of positive and negative
contributions to the Kähler action.

For this option Universe would do its best to save energy, being as near as possible to vacuum.
Also vacuum extremals would become physically relevant: note that they would be only inertial
vacua and carry non-vanishing density gravitational energy. The non-determinism of the vacuum
extremals would have an interpretation in terms of the ability of Universe to engineer itself.

The 3-surfaces for which CP2 projection is at least 2-dimensional and not a Lagrange mani-
fold would correspond to non-vacua since conservation laws do not leave any other option. The
variational principle would favor equally magnetic and electric configurations whereas absolute
minimization of action based on SK would favor electric configurations. The positive and negative
contributions would be minimized for 4-surfaces in relative homology class since the boundary of
X4 defined by the intersections with 7-D light-like causal determinants would be fixed. Without
this constraint only vacuum bubbles would result.

The attractiveness of the number theoretical variational principle from the point of calculability
of TGD would be that the initial values for the time derivatives of the imbedding space coordinates
at X3 at light-like 7-D causal determinant could be computed by requiring that the energy of the
solution is minimized. This could mean a computerizable solution to the construction of Kähler
function. The number theoretic approach based on the properties of quaternions and octonions
discussed in the chapter [E2] leads to a proposal for the general solution of field equations based
on the generalization of the notion of calibration [33] providing absolute minima of volume to that
of Kähler calibration. This approach will not be discussed in this chapter.

In this chapter I will first consider the basic properties of the configuration space, discuss
briefly the various approaches to the geometrization of the configuration space, and introduce
the two complementary strategies based on a direct guess of Kähler function and on the group
theoretical approach assuming that configuration space can be regarded as a union of symmetric
spaces. After these preliminaries a definition of the Kähler function is proposed and various
physical and mathematical motivations behind the proposed definition are discussed. The key
feature of the Kähler action is classical non-determinism, and various implications of the classical
non-determinism are discussed.
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Figure 1: Structure of the configuration space: two-dimensional visualization

2 Configuration space

The configuration space of TGD consists of all 3-surfaces of M4
+ × CP2 containing sets of

i) surfaces with all possible manifold topologies and arbitrary numbers of components (N-particle
sectors)
ii) singular surfaces topologically intermediate between two manifold topologies (see Fig. 2)
We shall use the symbol C(H) to denote the set of 3-surfaces X3 ⊂ H. It should be emphasized
that surfaces related by Diff3 transformations will be regarded as different surfaces in the sequel.

These surfaces form a connected(!) space since it is possible to glue various N-particle sectors to
each other along their boundaries consisting of sets of singular surfaces topologically intermediate
between corresponding manifold topologies. The connectedness of the configuration space is a
necessary prerequisite for the generalization of stringy description of topology changing particle
reactions as continuous paths in configuration space (see Fig. 2).

The original view about configuration space geometry was inspired by the stringy generalization
of Feynman diagrams. Their space time counterparts would be singular as 4-manifolds but 3-D ver-
tex would represent a singular 3-manifold. During last years however also the direct generalization
of the ordinary Feynmann diagram such that lines are replaced with 4-surfaces meeting at their
ends has emerged and is favored both by its elegance concerning the treatment of fermion number
and physical arguments. For these transitions 4-surfaces would singular but vertices are completely
smooth 3-surface. In this case one could say that the transitions between different 3-topologies
can occur by a replication of the 3-manifold genuinely quantally. The stringy diagrams would have
interpretation as branched paths representing the propagation of a particle along several paths
simultaneously as in a double split experiment.

2.1 Previous attempts to geometrize configuration space

Concerning the geometrization of the configuration space there is a natural looking strategy. Ge-
ometrize first the set of surfaces with single component; the one-particle sector. Furthermore,
assume that many particle sectors are more or less equivalent to cartesian products of single par-
ticle sectors. This strategy was indeed followed in earlier attempts but it has turned out that this
is not quite the correct path to follow.

What made this approach so promising was the observation that any map from a given 3-
manifold X to M4 × CP2 defines a surface. Maps related by a diffeomorphisms of X3 define
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Figure 2: Two-dimensional visualization of topological description of particle reactions. a) Gener-
alization of stringy diagram describing particle decay: 4-surface is smooth manifold and vertex a
non-unique singular 3-manifold, b) Topological description of particle decay in terms of a singular
4-manifold but smooth and unique 3-manifold at vertex. c) Topological origin of Cabibbo mixing.

identical surfaces. Thus one can regard the set of the connected 3-surfaces with fixed topology
as the space Map(X3, H)/Diff3, the maps related by diffeomorphism being identified. It soon
turned out that the formulation of the theory in the space of 3-surfaces doesn’t look simple. Rather,
one should use the extended configuration space consisting of the union of the spaces Map(X3,H)
with all possible 3-topologies.

In the mapping space formulation the theory would have looked roughly like following.
Theory is free field theory in the union of the spaces Map(X3,H) (X3 can have any topology)

endowed with Diff3 invariant geometry. Diff3 might act as the isometries of the geometry as
has been assumed in earlier attempts to construct geometry of Map. The second possibility
is that metric is also Diff3 degenerate so that for Diff3 generators interpreted as vector fields in
configuration space have zero norm and metrically Map reduces effectively to the space of surfaces.
Present approach is based on this alternative. One good reason for this approach is that it gives
good hopes to realize Diff3 invariance since the vector fields generating Diff3 transformations
correspond to zero norm vector fields already at the level of configuration space geometry. The
physically acceptable field configurations are Diff3 invariant and in the case of scalar field they could
be regarded as field configurations in Map(X3,H)/Diff3. A weaker form of Diff3 invariance is
based on the requirement that states created by infinitesimal Diff3 generators are zero norm states.

What made the mapping space formulation so attractive at first glance was that in the case
of M4 × CP2 one can regard the mapping space as a generalization of a coset space G/H of two
finite dimensional groups to a local coset space that is a coset space formed by dividing the local
gauge group defined by product of M4 and color SU(3) with local gauge group SU(2)× U(1).

Map(X3, M4 × CP2) = G/H ,

G = Map(X3,M4 × SU(3)) ,

H = Map(X3, SU(2)× U(1)) . (3)

That the representability as a local coset space is indeed very nice feature should become clear
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from the following arguments.

1. If the finite dimensional coset space concept, or rather the concept of a symmetric space
with Kähler structure [17], generalizes then we can expect that metric is invariant under a
huge symmetry group: besides diffeomorphisms the group of the local gauge transformations
defined by M4 × SU(3) act as isometries. Symmetry group might be even larger: one can
represent Map also as the coset space of P × SU(3) divided by SO(3, 1) × SU(2) × U(1),
where P denotes Poincare group. The physical interpretation of the isometry group as the
symmetry group of color-gravitational interactions would be natural.

2. The implications of the infinite parameter group of isometries of local coset space structure
for the calculability of the theory are expected to be decisive. In finite-dimensional case all
the geometrical quantities are left invariant: for example curvature tensor is just covariantly
constant. Ricci tensor is proportional to the metric tensor, and so on. In fact, curvature
properties of the finite dimensional symmetric spaces are determined purely Lie-algebraically
[17]. In present case isometry invariance would mean that one can calculate the whole
geometry by restricting the consideration to a single suitably chosen 3-surface! Isometry
invariance is expected also to make it possible to solve d’Alembert type free field equations
using group theoretical methods.

3. Physical states cannot certainly correspond to representations of the local gauge group
Map(X3,M4 × SU(3)) since this would lead to catastrophic results concerning the spec-
trum of, say Dirac operator. If local gauge transformations act as isometries, one obtains an
infinite degeneracy for the physical states with given mass. Rather, some Abelian extension
of the local gauge group, to be called Kac-Moody group in sequel , should play the role of the
spectrum generating group of the field equations as in the case of string models. One possi-
bility to achieve this situation is based on projective representations: true representations of
the centrally extended group correspond to the projective representations of Map.

There are however grave objections against this kind of scenario.

1. Map(X3,M4 × SU(3)) seems in some respects mathematically awkward. First, Lie-algebra
generators are not Diff3 invariant so that the realization of Diff3 invariance is expected to
be problematic. Secondly, the globalization of gauge symmetry and the choice of the scalar
function basis of X3 (generators are products of scalar function basis with the isometry
generators of H) associated with the algebra are difficult mathematical problems since all 3-
topologies are possible. Also it is difficult to understand how one could continue Map(X3,H)
to a global symmetry of the configuration space: the gauge invariance property of the metric
is expected to be broken in the sense that different 3-topologies are not related by left
invariance.

2. From the case of loop groups [18] it is known that group theory doesn’t determine curva-
ture properties uniquely in infinite dimensional case so that all nice properties of the finite
dimensional case do not generalize. Loop groups with Kähler metric are however Einstein
spaces so that Ricci tensor is indeed covariantly constant quantity and this property might
generalize as such. In fact it turns out that Ricci flatness is necessary for the divergence
free field theory so that configuration space metric must be vacuum solution of Einstein’s
equations.

3. The existence of the Abelian extension seems however to be in contradiction with certain
no-go theorems about Abelian extensions [20].
i) Abelian extensions of the gauge group Map(X3, G) (necessary for state construction) are
U(1) extensions (central extensions) provided the dimension of the space is smaller than
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three(!).
ii) In higher dimensions the group appearing in the extension is infinite parameter Abelian
group.
iii) There are indications that no unitary faithful representations (satisfying certain natural
physical constraints) for these groups exist [20].

These no-go theorems suggest that Map(X3,M4×SU(3)) is perhaps not the actual isometry
group: since Kähler structure is necessary for the existence of the symplectic extension it
might happen that isometric action of Map(X3,M4 × SU(3)) is not consistent with the
existence of the Kähler structure.

4. There are also objections against the reduction of the geometrization to single particle level.

i) The procedure leads to difficulties with spin and statistics. If N-particle sector is essentially
cartesian product of single-particle sectors, the spinors of N-particle sector are tensor products
of spinors of 1-particle sectors. Since this holds true also in center of mass degrees of freedom
one obtains fermions with integer spin! The correct definition of the metric should avoid this
difficulty.

ii) It would be highly desirable to include the description of interactions into the metric of
the configuration space in accordance with the basic ideas of General Theory of Relativity:
direct sum metric is however trivial in this respect.

These are not the only difficulties of our previous attempts. The construction of the metric as
a naive generalization of loop space metric [18] posing various symmetry requirements leads to a
metric, which treats 3-surfaces as essentially one-dimensional objects. Therefore the increase of
the dimension from d = 1 to d = 3 seems to necessitate a completely new approach.

2.2 Constraints on the configuration space geometry

The constraints on the configuration space geometry result both from the infinite dimension of
the configuration space and from physically motivated symmetry requirements. There are three
basic physical requirements on the configuration space geometry: namely four-dimensional general
coordinate invariance, Kähler property and the decomposition of configuration space into a union
∪iG/Hi of symmetric spaces G/Hi, each coset space allowing G-invariant metric such that G is
subgroup of some ’universal group’ having natural action on 3-surfaces. Together with the infinite
dimensionality of the configuration space these requirements pose extremely strong constraints on
the configuration space geometry. In the following we shall consider these requirements in more
detail.

2.2.1 Diff4 invariance and Diff4 degeneracy

Diff4 plays fundamental role as the gauge group of General Relativity. In string models Diff2

invariance (Diff2 acts on the orbit of the string) plays central role in making possible the elimina-
tion of the time like and longitudinal vibrational degrees of freedom of string. Also in the present
case the elimination of the tachyons (time like oscillatory modes of 3-surface) is a physical necessity
and Diff4 invariance provides an obvious manner to do the job.

In the standard functional integral formulation the realization of Diff4 invariance is an easy task
at the formal level. The problem is however that functional integral over four-surfaces is plagued
by divergences and doesn’t make sense. In the present case the configuration space consists of 3-
surfaces and only Diff3 emerges automatically as the group of re-parameterizations of 3-surface.
Obviously one should somehow define the action of Diff4 in the space of 3-surfaces. Whatever
the action of Diff4 is it must leave the configuration space metric invariant. Furthermore, the

10



elimination of tachyons is expected to be possible only provided the time like deformations of the
3-surface correspond to zero norm vector fields of the configuration space so that 3-surface and its
Diff4 image have zero distance. The conclusion is that configuration space metric should be both
Diff4 invariant and Diff4 degenerate.

The problem is how to define the action of Diff4 in C(H). Obviously the only manner to achieve
Diff4 invariance is to require that the very definition of the configuration space metric somehow
associates a unique space time surface to a given 3-surface for Diff4 to act on! The obvious physical
interpretation of this space time surface is as ”classical space time” so that ”Classical Physics”
would be contained in configuration space geometry. It is this requirement, which has turned
out to be decisive concerning the understanding of the configuration space geometry. Amusingly
enough, the historical development was not this: the definition of Diff4 degenerate Kähler metric
was found by a guess and only later it was realized that Diff4 invariance and degeneracy could
have been postulated from beginning!

2.2.2 Decomposition of the configuration space into a union of symmetric spaces
G/H

The extremely beautiful theory of finite-dimensional symmetric spaces constructed by Elie Car-
tansuggests that configuration space should possess decomposition into a union of coset spaces
CH = ∪iG/Hi such that the metric inside each coset space G/Hi is left invariant under the in-
finite dimensional isometry group G. The metric equivalence of surfaces inside each coset space
G/Hi does not mean that 3-surfaces inside G/Hi are physically equivalent. The reason is that
the vacuum functional is exponent of Kähler action which is not isometry invariant so that the
3-surfaces, which correspond to maxima of Kähler function for a given orbit, are in a preferred
position physically. For instance, one can calculate functional integral around this maximum per-
turbatively. The sum of over i means actually integration over the zero modes of the metric (zero
modes correspond to coordinates not appearing as coordinate differentials in the metric tensor).

The coset space G/H is a symmetric space only under very special Lie-algebraic conditions.
Denoting the decomposition of the Lie-algebra g of G to the direct sum of H Lie-algebra h and its
complement t by g = h⊕ t, one has

[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

This decomposition turn out to play crucial role in guaranteing that G indeed acts as isometries
and that the metric is Ricci flat.

The four-dimensional Diff invariance indeed suggests to a beautiful solution of the problem of
identifying G. The point is that any 3-surface X3 is Diff4 equivalent to the intersection of X4(X3)
with the light cone boundary. This in turn implies that 3-surfaces in the space δH = δM4

+ ×CP2

should be all what is needed to construct configuration space geometry. The group G can be
identified as some subgroup of diffeomorphisms of δH and Hi contains that subgroup of G, which
acts as diffeomorphisms of the 3-surface X3. Since G preserves topology, configuration space
must decompose into union ∪iG/Hi, where i labels 3-topologies and various zero modes of the
metric. For instance, the elements of the Lie-algebra of G invariant under configuration space
complexification correspond to zero modes.

The reduction to the light cone boundary, identifiable as the moment of big bang, looks perhaps
odd at first. In fact, it turns out that the classical non-determinism of Kähler action does not allow
the complete reduction to the light cone boundary: physically this is a highly desirable implication
but means a considerable mathematical challenge.
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2.2.3 Kähler property

Kähler property implies that the tangent space of the configuration space allows complexification
and that there exists a covariantly constant two-form Jkl, which can be regarded as a representation
of the imaginary unit in the tangent space of the configuration space:

J r
k Jrl = −Gkl . (4)

There are several physical and mathematical reasons suggesting that configuration space metric
should possess Kähler property in some generalized sense.

1. Kähler property turns out to be a necessary prerequisite for defining divergence free config-
uration space integration. We will leave the demonstration of this fact later although the
argument as such is completely general.

2. Kähler property very probably implies an infinite-dimensional isometry group. The study
of the loop groups Map(S1, G) [18] shows that loop group allows only single Kähler metric
with well defined Riemann connection and this metric allows local G as its isometries!

To see this consider the construction of Riemannian connection for Map(X3,H). The defin-
ing formula for the connection is given by the expression

2(∇XY, Z) = X(Y, Z) + Y (Z, X)− Z(X, Y )
+ ([X, Y ], Z) + ([Z, X], Y )− ([Y, Z], X) (5)

X,Y, Z are smooth vector fields in Map(X3, G). This formula defines ∇XY uniquely pro-
vided the tangent space of Map is complete with respect to Riemann metric. In the finite-
dimensional case completeness means that the inverse of the covariant metric tensor exists
so that one can solve the components of connection from the conditions stating the covariant
constancy of the metric. In the case of the loop spaces with Kähler metric this is however
not the case.

Now the symmetry comes into the game: if X,Y, Z are left (local gauge) invariant vector
fields defined by the Lie-algebra of local G then the first three terms drop away since the
scalar products of left invariant vector fields are constants. The expression for the covariant
derivative is given by

∇XY = (AdXY −Ad∗XY −Ad∗Y X)/2 (6)

where Ad∗X is the adjoint of AdX with respect to the metric of the loop space.

At this point it is important to realize that Freed’s argument does not force the isometry
group of the configuration space to be Map(X3, M4×SU(3))! Any symmetry group, whose
Lie algebra is complete with respect to the configuration space metric ( in the sense that any
tangent space vector is expressible as superposition of isometry generators modulo a zero
norm tangent vector) is an acceptable alternative.

The Kähler property of the metric is quite essential in one-dimensional case in that it leads to
the requirement of left invariance as a mathematical consistency condition and we expect that
dimension three makes no exception in this respect. In 3-dimensional case the degeneracy of
the metric turns out to be even larger than in 1-dimensional case due to the four-dimensional
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Diff degeneracy. So we expect that the metric ought to possess some infinite-dimensional
isometry group and that the above formula generalizes also to the 3-dimensional case and to
the case of local coset space. Note that in M4 degrees of freedom Map(X3,M4) invariance
would imply the flatness of the metric in M4 degrees of freedom.

The physical implications of the above purely mathematical conjecture should not be un-
derestimated. For example, one natural looking manner to construct physical theory would
be based on the idea that configuration space geometry is dynamical and this approach is
followed in the attempts to construct string theories [19]. Various physical considerations (in
particular the need to obtain oscillator operator algebra) seem to imply that configuration
space geometry is necessarily Kähler. The above result however states that configuration
space Kähler geometry cannot be dynamical quantity and is dictated solely by the require-
ment of internal consistency. This result is extremely nice since it has been already found
that the definition of the configuration space metric must somehow associate a unique clas-
sical space time and ”classical physics” to a given 3-surface: uniqueness of the geometry
implies the uniqueness of the ”classical physics”.

3. The choice of the imbedding space becomes highly unique. In fact, the requirement that
configuration space is not only symmetric space but also (contact) Kähler manifold inheriting
its (degenerate) Kähler structure from the imbedding space suggests that spaces, which
are products of four-dimensional Minkowski space with complex projective spaces CPn, are
perhaps the only possible candidates for H. The reason for the unique position of the
four-dimensional Minkowski space turns out to be that the boundary of the light cone of D-
dimensional Minkowski space is metrically a sphere SD−2 despite its topological dimension
D − 1: for D = 4 one obtains two-sphere allowing Kähler structure and infinite parameter
group of conformal symmetries!

4. It seems possible to understand the basic mathematical structures appearing in string model
in terms of the Kähler geometry rather nicely.

i) The projective representations of the infinite-dimensional isometry group (not necessarily
Map!) correspond to the ordinary representations of the corresponding centrally extended
group [23]. The representations of Kac Moody group indeed play central role in string models
[24, 25] and configuration space approach would explain their occurrence, not as a result of
some quantization procedure, but as a consequence of symmetry of the underlying geometric
structure.

ii) The bosonic oscillator operators of string models would correspond to centrally extended
Lie-algebra generators of the isometry group acting on spinor fields of the configuration space.

iii) The ”fermionic” fields ( Ramond fields, [24, 25]) should correspond to gamma matri-
ces of the configuration space. Fermionic oscillator operators would correspond simply to
contractions of isometry generators jk

A with complexified gamma matrices of configuration
space

Γ±A = jk
AΓ±k

Γ±k = (Γk ± Jk
lΓ

l)/
√

2 (7)

(Jk
l is the Kähler form of the configuration space) and would create various spin excitations

of the configuration space spinor field. Γ±k are the complexified gamma matrices, complexi-
fication made possible by the Kähler structure of the configuration space.
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This suggests that some generalization of the so called Super Kac Moody algebra of string
models [24, 25] should be regarded as a spectrum generating algebra for the solutions of field
equations in configuration space.

Although the Kähler structure seems to be physically well motivated there is a rather heavy
counter argument against the whole idea. Kähler structure necessitates complex structure in the
tangent space of the configuration space. In CP2 degrees of freedom no obvious problems of
principle are expected: configuration space should inherit in some sense the complex structure of
CP2.

In Minkowski degrees of freedom the signature of the Minkowski metric seems to pose a serious
obstacle for complexification: somehow one should get rid of two degrees of freedom so that only
two Euclidian degrees of freedom remain. An analogous difficulty is encountered in quantum field
theories: only two of the four possible polarizations of gauge boson correspond to physical degrees
of freedom: mathematically the wrong polarizations correspond to zero norm states and transverse
states span a complex Hilbert space with Euclidian metric. Also in string model analogous situation
occurs: in case of D-dimensional Minkowski space only D − 2 transversal degrees of freedom are
physical. The solution to the problem seems therefore obvious: configuration space metric must
be degenerate so that each vibrational mode spans effectively a 2-dimensional Euclidian plane
allowing complexification.

We shall find that the definition of Kähler function to be proposed indeed provides a solution
to this problem and also to the problems listed before.

1. The definition of the metric doesn’t differentiate between 1- and N-particle sectors, avoids
spin statistics difficulty and has the physically appealing property that one can associate to
each 3-surface a unique classical space time: classical physics is described by the geometry of
the configuration space! And the geometry of the configuration space is determined uniquely
by the requirement of mathematical consistency!

2. Complexification is possible only provided the dimension of the Minkowski space equals to
four(!).

3. It is possible to identify a unique candidate for the necessary infinite-dimensional isometry
group G. G is subgroup of the diffeomorphism group of δM4

+ × CP2. Essential role is
played by the fact that the boundary of the four-dimensional light cone, which, despite being
topologically 3-dimensional, is metrically two-dimensional(!) Euclidian sphere, and therefore
allows infinite-parameter groups of isometries as well as conformal and canonical symmetries
and also Kähler structure unlike the higher-dimensional light cone boundaries. Therefore
configuration space metric is Kähler only in the case of four-dimensional Minkowski space
and allows symplectic U(1) central extension without conflict with the no-go theorems about
higher dimensional central extensions.

The study of the vacuum degeneracy of Kähler function defined by Kähler action forces to
conclude that the isometry group must consist of the canonical transformations of δH =
δM4

+ × CP2. The corresponding Lie algebra can be regarded as a loop algebra associated
with the canonical group of S2 × CP2, where S2 is rM = constant sphere of light cone
boundary. Thus the finite-dimensional group G defining loop group in case of string models
extends to an infinite-dimensional group in TGD context. This group is a real monster! The
radial Virasoro localized with respect to S2×CP2 defines naturally complexification for both
G and H. The general form of the Kähler metric deduced on basis of this symmetry has
same qualitative properties as that deduced from Kähler function identified as the absolute
minimum of Kähler action. Also the zero modes, among them isometry invariants, can be
identified.
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4. The construction of the configuration space spinor structure is based on the identification of
the configuration space gamma matrices as linear superpositions of the oscillator operators
associated with the second quantized induced spinor fields. The extension of the canonical
invariance to super canonical invariance fixes the anti-commutation relations of the induced
spinor fields, and configuration space gamma matrices correspond directly to the super gen-
erators. Physics as number theory vision suggests strongly that configuration space geometry
exists for 8-dimensional imbedding space only and that the choice M4

+×CP2 for the imbed-
ding space is the only possible one.

3 Identification of the Kähler function

There are two approaches to the construction of the configuration space geometry: a direct physics
based guess of the Kähler function and a group theoretic approach based on the hypothesis that
CH can be regarded as a union of symmetric spaces. The rest of this chapter is devoted to the
first approach.

3.1 Definition of Kähler function

Let X3 be a given 3-surface and let X4 be any four-surface containing X3 as a sub-manifold:
X4 ⊃ X3. The 4-surface X4 possesses in general boundary. If the 3-surface X3 has nonempty
boundary δX3 then the boundary of X3 belongs to the boundary of X4: δX3 ⊂ δX4.

The projection of CP2 Kähler form J (induced Kähler form) defines Maxwell field on X4. One
can associate to Kähler form Maxwell action and also Chern-Simons anomaly term proportional to∫

X4 J∧J in well known manner. Chern Simons term is purely topological term and well defined for
orientable 4-manifolds, only. Since there is no deep reason for excluding non-orientable space-time
surfaces it seems reasonable to drop Chern Simons term from consideration. Therefore Kähler
action SK(X4) can be defined as

SK(X4) = k1

∫

X4;X3⊂X4
J ∧ (∗J) . (8)

The sign of the square root of the metric determinant, appearing implicitly in the formula, is
defined in such a manner that the action density is negative for the Euclidian signature of the
induced metric and such that for a Minkowskian signature of the induced metric Kähler electric
field gives a negative contribution to the action density.

The notational convention

k1 ≡ 1
16παK

, (9)

where αK will be referred as Kähler coupling strength will be used in the sequel. If the preferred
extremals minimize/maximize [E2] the absolute value of the action in each region where action
density has a definite sign, the value of αK can depend on space-time sheet.

One can define the Kähler function in the following manner. Consider first the case H =
M4

+×CP2 and neglect for a moment the non-determinism of Kähler action. Let X3 be a 3-surface
at the light-cone boundary δM4

+×CP2. Define the value K(X3) of Kähler function K as the value
of the Kähler action for some preferred extremal in the set of four-surfaces containing X3 as a
sub-manifold:

K(X3) = Min{SK(X4)}|X3⊂X4 . (10)
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The original hypothesis was that the intersections of the four-surface with the boundary of the
light cone (δM4

+ × CP2) defined by the condition a =
√

(m0)2 − r2
M = 0 and with the surface

a → ∞ are not subject to variational conditions since this would have meant that all universes
have vanishing classical conserved quantities. Define the value K(Y 3) of Kähler function for all
Diff4 related 3-surfaces at X4(X3) as K(X3) so that the metric is Diff4 degenerate.

Absolute minimization of Kähler action was the first identification for the principle selecting
the preferred extremal. The worst that can happen for this option is that the value of Kähler
action is negative and infinite for the entire Universe so that the vacuum functional defined by its
exponent vanishes. A more plausible choice of the preferred extremal is based on the assumption
that the absolute values of the contributions to Kähler action are separately minimized in regions
of definite sign for Kähler action density. This implies the minimization of the absolute value of the
net action and extremals are as near as possible to vacuum extremals, and minimize their energy:
this gives hopes of constructing the extremals using only data at X3. I ended up to this option
from number theoretical vision, which also leads to an explicit proposal for how to construct these
extremals of Kähler action [E2].

This simple picture is too simple to be true and must be generalized even in case of M4
+. The

reason is the non-determinism of Kähler action implying that besides δM4
+ × CP2 all light like

7-surfaces X3
l ×CP2, where X3

l is light like surface of M4
+ suggest themselves act as causal deter-

minants. The physical reason is that pairs of space-time sheets having opposite time orientation
and opposite energies can be created from vacuum at these 7-surfaces.

Even worse (or better), it has however become clear that the gigantic symmetries associated
with δM4

+ × CP2 are also symmetries at the laboratory scale and directly visible at the level
of propagators and vertices [C5]. Furthermore, M4 is as a good option as M4

+, and number
theoretically even better since it allows interpretation as the space of quaternions with Minkowski
metric defined by the imaginary part of q2. Also exact Poincare invariance favors M4 option.

M4 option makes sense only if X3 is selected uniquely by the internal geometry of X4. The
possibility of negative Poincare energies inspires the hypothesis that the total quantum numbers
and classical conserved quantities of the Universe vanish. By crossing symmetry this view is
consistent with elementary particle physics. Consistency with macroscopic physics can be achieved
if gravitational energy is defined as the difference of Poincare energies of positive and negative
energy matter. This definition indeed resolves the long lasting puzzle created by the fact that
Robertson-Walker cosmologies correspond to vacuum extremals with respect to inertial energy
and momentum. Space-time surfaces consists of pairs of positive and negative energy space-time
sheets created at some moment from vacuum and branching at that moment to separate space-time
sheets. This allows to select X3 uniquely and define X4(X3) as the absolute minimum of Kähler
action. Also a natural fixing of Diff4 gauge becomes possible. This view is also consistent with the
non-determinism of Kähler action. This option works for both M4

+ and M4 and is very probably
the correct one.

3.2 Minkowski space or its future light cone?

The basic question is whether one should choose the imbedding space to be M4×CP2 or M4
+×CP2.

M4
+ option has several nice features.

1. Since future light cone corresponds to vacuum cosmology (cosmic time is Lorentz invariant
distance) the latter choice seems to be more physical since it makes big bang cosmology a
geometrical necessity and implies the arrow of time naturally. The loss of exact Poincare
invariance could be seen as a problem. Even if one accepts light cone alternative as the
correct one (as we shall cautiously do) there are two alternative definitions of the Kähler
function.
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2. For M4
+ option minimizing four-surfaces belong to the future light cone so that the presence

of the light cone boundary reflects itself in the properties of minimizing four-surfaces: big
bang cosmology is expected to manifest itself in the time development of four-surfaces. This
alternative implies the loss of Poincare invariance in cosmological scales: in the laboratory
scale Poincare invariance is of course practically exact since Poincare invariance is a symmetry
of the extremals of Kähler action and broken only in the set of absolute minima.

3. One could avoid the loss of Poincare invariance without totally giving up the light cone
cosmology by defining the metric of C(M4

+×CP2) as the restriction of the metric of C(M4×
CP2): minimizing four-surfaces would belong to M4 although 3-surfaces belong to light
cone. Poincare invariance becomes exact symmetry at the Lie algebra level broken only
”kinematically”. One can however heavily criticize this alternative: if one wants to interpret
four-surface as an actual space-time then it is highly artificial to allow four-surfaces, which do
not belong to the actual imbedding space. A second questionable feature is that the presence
of the light cone boundary does not reflect itself in the properties of 4-surfaces as it should.

M4 option makes many highly non-trivial and nice predictions which are allowed but not
predicted by M4

+ option. The mathematical elegance of M4 option is definitely superior to that of
M4

+ alternative.

1. Suppose that the classical non-determinism of Kähler action indeed implies that all light like
7-surfaces X3

l ×CP2, where X3
l is light like surface of M4

+, can act as causal determinants. As
already noticed, this makes sense if pairs of space-time sheets having opposite time orientation
and opposite energies can be created from vacuum at these 7-surfaces.

2. For M4 option the total energy of classical and by quantum-classical correspondence of also
quantum universes must vanish and all matter would be created from vacuum. There would
be no need to ponder the academic but very nasty question about total fermion numbers
of the universe: all states of the universe would be vacua as far net quantum numbers are
considered. Of course, also in the case of M4

+ it is possible and natural to postulate that
nothing flows out from the future light cone or into it and this would imply vanishing total
quantum numbers.

3. M4 option allows both maximal space-time symmetries and forces the fractal hierarchy of
cosmologies inside cosmologies defined by light cones inside light cones as does in fact also
M4

+ option. These cosmologies would be a result of dynamics rather than of the properties
of the imbedding space. If the separation of positive and negative energy densities can be
achieved in cosmological length scales, this option might work. The nice feature is that
configuration space becomes a union of configuration spaces associated with various light-
like causal determinants X3

l × CP2 with the most plausible identification of X3
l being as a

union of future and past directed light cone boundaries.

4. Poincare transformations act as symmetries and one can assign to given space-time sheet
unique value of geometric time as the moment of geometric time when it was created. This
is of utmost importance concerning the understanding of the relationship between subjective
and geometric time in TGD inspired theory of consciousness. It makes also possible to assign
to S-matrix time parameter identifiable as interaction time without problems with energy
conservation.

5. For M4 option the super conformal invariance associated with light like 3-surfaces X3
l ×

CP2 and super-conformal invariance associated with 3-dimensional light-like boundaries and
”elementary particle” horizons of space-time surfaces interact very naturally. The super
conformal invariance associated with 3-dimensional light-like surfaces corresponds to the
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Super Kac Moody symmetries of string models with Poincare symmetry being exact, and
determines mass squared formula. The super-canonical invariance associated with X3

l ×CP2

is something new and it modifies that the stringy mass formula. The interaction of super
Kac-Moody conformal algebra in super-canonical algebra is of special significance in the
construction of quantum theory.

6. M4 can be interpreted as the space of quaternions with Minkowski metric identifiable as
the imaginary part of q2. The imbedding space can be interpreted as a space having hyper-
octonionic tangent space structure [E2], and space-time surfaces as maximal associative sub-
manifolds with hyper-quaternionic tangent space structure. Furthermore, the fact that CP2

parameterizes hyper-quaternionic planes of hyper-octonion space, raises M4×CP2 in a com-
pletely unique position number theoretically.

Which of this alternatives is correct? At the practical laboratory level there are no testable
differences between these options and it is very difficult to test whether the first moments of our
cosmology are associated with a cosmology inside cosmology or M4

+. One can however say that
whereas M4

+ option allows what seems to be the correct interpretation, M4 option forces it, and
its mathematical elegances is superior. For a long time I nearly-believed that M4

+ alternative is
the correct one but after a long period of certainty I feel more and more empathy towards M4

option.

3.3 The values of the Kähler coupling strength?

Since the vacuum functional of the theory turns out to be essentially the exponent exp(K) of
the Kähler function, the dynamics depends on the normalization of the Kähler function. Since
the Theory of Everything should be unique it would be highly desirable to find arguments fixing
the normalization or equivalently the possible values of the Kähler coupling strength αK . Also a
discrete spectrum of values is acceptable.

The quantization of Kähler form could result in the following manner. It will be found that
Abelian extension of the isometry group results by coupling spinors of the configuration space to
a multiple of Kähler potential. This means that Kähler potential plays role of gauge connection
so that Kähler form must be integer valued by Dirac quantization condition for magnetic charge.
So, if Kähler form is co-homologically nontrivial it is quantized.

Unfortunately, the exact definition of renormalization group concept is not at all obvious. There
is however a much more general but more or less equivalent manner to formulate the condition
fixing the value of αK . Vacuum functional exp(K) is analogous to the exponent exp(−H/T ) ap-
pearing in the definition of the partition function of a statistical system and S-matrix elements and
other interesting physical quantities are integrals of type 〈O〉 =

∫
exp(K)O

√
GdV and therefore

analogous to the thermal averages of various observables. αK is completely analogous to tempera-
ture. The critical points of a statistical system correspond to critical temperatures Tc for which the
partition function is nonanalytic function of T −Tc and according RGE hypothesis critical systems
correspond to fixed points of renormalization group evolution. Therefore, a mathematically more
precise manner to fix the value of αK is to require that some integrals of type 〈O〉 (not necessary
S-matrix elements) become nonanalytic at 1/αK − 1/αc

K .
This analogy suggests also a physical motivation for the unique value or value spectrum of

αK . Below the critical temperature critical systems suffer something analogous to spontaneous
magnetization. At the critical point critical systems are characterized by long range correlations
and arbitrarily large volumes of magnetized and non-magnetized phases are present. Spontaneous
magnetization might correspond to the generation of Kähler magnetic fields: the most probable
3-surfaces are Kähler magnetized for subcritical values of αK . At the critical values of αK the most

18



probable 3-surfaces contain regions dominated by either Kähler electric and or Kähler magnetic
fields: by the compactness of CP2 these regions have in general outer boundaries.

This suggests that 3-space has hierarchical, fractal like structure: 3-surfaces with all sizes (and
with outer boundaries) are possible and they have suffered topological condensation on each other.
Therefore the critical value of αK allows the richest possible topological structure for the most
probable 3-space. In fact, this hierarchical structure is in accordance with the basic ideas about
renormalization group invariance. This hypothesis has highly nontrivial consequences even at the
level of ordinary condensed matter physics.

The assumption about single critical value of αK is probably too strong. p-Adic length scale hi-
erarchy together with the immense vacuum degeneracy of the Kähler action leads to the hypothesis
that different p-adic length scales correspond to different critical values of αK , and that ordinary
coupling constant evolution is replaced by a piecewise constant evolution induced by that for αK .
One implication is the vanishing of the loop corrections and thus the absence of loop divergences
in the perturbation theory. This point is discussed in [C5].

Renormalization group invariance is closely related with criticality. The self duality of the
Kähler form and Weyl tensor of CP2 indeed suggest RG invariance. The point is that in N = 1
super-symmetric field theories duality transformation relates the strong coupling limit for ordinary
particles with the weak coupling limit for magnetic monopoles and vice versa. If the theory is self
dual these limits must be identical so that action and coupling strength must be RG invariant
quantities. The geometric realization of the duality transformation is easy to guess in the standard
complex coordinates ξ1, ξ2 of CP2 (see Appendix of the book). In these coordinates the metric
and Kähler form are invariant under the permutation ξ1 ↔ ξ2 having Jacobian −1.

Consistency requires that particles of the theory are equivalent with magnetic monopoles: the
so called CP2 type extremals identified as elementary particles are isometric imbeddings of CP2

and can be regarded as monopoles. The magnetic flux however flows in internal degrees of freedom
(possible by nontrivial homology of CP2) so that no long range 1/r2 magnetic field is created.
The magnetic contribution to Kähler action is positive and this suggests that ordinary magnetic
monopoles are not stable, since they do not minimize Kähler action: a cautious conclusion in
accordance with the experimental evidence is that TGD does not predict magnetic monopoles. It
must be emphasized that the prediction of monopoles of practically all gauge theories and string
theories and follows from the existence of a conserved electromagnetic charge.

4 Questions

A good manner to get grasp about the properties of Kähler function is through what might be
called frequently asked questions.

4.1 Absolute minimization or something else?

The requirement that the 4-surface having given 3-surface as its sub-manifold is absolute minimum
of the Kähler action is the most obvious guess for the principle selecting the preferred extremals and
has been taken as a working hypothesis for about one and half decades. The principle admittedly
looks somewhat ad hoc, and quite recently (I am writing this in the beginning of 2005) it turned out
that that absolute minimization principle should be perhaps relaxed in the sense that the absolute
values of the contributions to the net Kähler action coming from regions where the action density
has definite sign [E2] are separately minimized (or maximed in dual case). This would allow αK to
depend on space-time sheet and allow to understand p-adic evolution of αK . Therefore a critical
discussion is in order.
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4.1.1 Consequences of the absolute minimum property

Absolute minimum property, or any more refined manner to select preferred extremal of Kähler
action, has several nontrivial consequences. In fact these consequences are shared also by the
modified variational principle.

1. The so called classical theory becomes an essential part of the configuration space geometry
and quantum theory. One can associate with a given 3-surface a unique space-time, which
might be interpreted as the classical space time associated with the quantum state which
is completely localized to a given four-surface. In particular, one can associate definite
conserved quantities with 3-surface X4: this however implies that the minimizing four-surface
has infinite size as will be found later.

2. Minimization requirement implies that classical space time can be regarded as a generalized
Bohr orbit. The point is that the initial value problem associated with the minimization of
Kähler action differs from the standard initial value problems of the classical field theories.
In the ordinary initial value problem both the values hk(x) of H coordinates and their
time derivatives ∂th

k(x) could be fixed arbitrarily as functions of X3 coordinates. Now
however the minimizing 4-surface is unique and the values of time derivatives are fixed by
the minimization condition. This in turn implies something analogous to the quantization of
canonical momenta.

Therefore the definition of Kähler function seems to catch some quite essential features of
quantum theory and seems to point out that Bohr rules are not merely a by product of WKB
approximation but exact part of quantum theory. An interesting question is whether these
quantization conditions could explain classically the quantization of, say, electric charge and
mass.

3. Minimization requirement implies four-dimensional Diff degeneracy of the configuration space
metric with all its deep consequences to be discussed shortly.

4. The minimization requirement together with the assumption that vacuum functional is of
the form exp(K) implies that theory is well defined in the limit of the infinite system. The
stability of the theory results from two opposing tendencies (”Yin” and ”Yang”!). Vacuum
functional favors large action but minimization principle tends to make action small, in fact
negative since Kähler action is not positive definite. Therefore, action is expected to be nega-
tive for most configurations. In the limit of infinite system this means that vacuum functional
is non-vanishing only for those systems, which have vanishing average action per volume in
sufficiently large length scales. This has highly nontrivial cosmological consequences. For
obvious reasons we shall refer this stabilization mechanism as ”Ying-Yang” principle in the
sequel.

5. Absolute minimum property implies the existence of an additional symmetry, not necessarily
identifiable as isometries of the configuration space metric. If four-surfaces correspond to sub-
manifolds of the light cone (rather than whole Minkowski space) this symmetry leaves Kähler
function invariant and therefore implies additional degeneracy of the configuration space
metric (besides four-dimensional Diff degeneracy): we shall later consider the identification
of this degeneracy.

6. Absolute minimum property fixes the definition of the Kähler function uniquely. The cos-
mologically natural light cone alternative (four-surfaces are sub-manifolds of the light cone
rather than sub-manifolds of the whole Minkowski space) is very probably the only mathe-
matically acceptable alternative.
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4.1.2 Objection against absolute minimization and variant of Yin-Yang principle

”Yin-Yang” principle has been seen as a nice implication of absolute minimization. One can
however argue that Yin-Yang principle need not be consistent with the absolute minimization.
Indeed, it might happen that all absolute minima representing the entire Universe have an infinite
negative value of Kähler action so that the exponent of Kähler function would vanish identically.

This situation is not encountered for the modified variational principle. If the absolute values
of the contributions to the Kähler action from regions where the action density has definite sign,
are separately minimized, the absolute value of the net action is minimized. This gives good hopes
that net Kähler action is near to zero for the entire Universe.

For this option the extremals are as near as possible to vacuum extremals and Ying-Yang
Principle would be realized in a slightly different form favoring extremals with small but positive
value of Kähler function: depending on the sign of Kähler function this would slightly favor
magnetic or electric configurations.

There are good reasons to expect that the extremals minimize rest energy and possibly also
other conserved quantities and it would become possible to deduce the initial values of the time
derivatives of the imbedding space coordinates at space-like causal determinant X3 from energy
minimization numerically and hence also construct the X4(X3) from the data at X3. It is not
possible to overemphasize the implications of this for the computability of the theory.

4.1.3 Absolute minimum condition explicitly and Diff4 degeneracy

The following argument is tailored for absolute minima but it goes through also for the modified
variational principle [E2]. The trivial manner to achieve Diff4 degeneracy and -invariance of the
Kähler function is to restrict absolute minimization to the boundary of the light cone and to define
the value of the Kähler function for diffeo-related 3-surfaces by requiring Diff4 invariance. The
second alternative is to allow absolute minimization for all 3-surfaces: in this case one must prove
Diff4 invariance of Kähler function. The following argument suggests that these two definitions
indeed are equivalent.

To derive the argument consider what minimization principle actually means for a given 3-
surface. Absolute minimum surfaces are assumed to correspond to sub-manifolds of either light
cone or Minkowski space.

1. The four-surface associated with X3 is expected to carry non-vanishing four momentum.
Action is minimized through the generation of Kähler electric fields and this necessarily
leads to a generation of a non-vanishing energy momentum tensor and the energy density
associated with the Maxwell action is positive definite. Therefore the minimizing four-surface
necessarily has infinite extension with respect to M4 time in future direction. If the four-
surface is sub-manifold of M4 instead of M4

+ four-surface must have infinite extension in past
also.

2. Absolute minimum condition implies the stationarity of the Kähler action with respect to the
local variations of the four-surface satisfying the condition that these variations are trivial,
when restricted to X3. Therefore the standard Lagrangian field equations hold true

∂α(∂L/∂hk
,α)− ∂L/∂hk = 0 , (11)

where L is Kähler Lagrangian. First variation gives also the following kind of boundary term
from future and past infinities.
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δ∞S =
/+∞

−∞
(∂L/∂hk

,0)δh
kd3x , (12)

which vanishes identically for the variations considered since these variations vanish at infin-
ity:

δhk(x)|±∞ = 0 . (13)

3. Absolute minimum condition can be formulated by considering the second variation of the
action that is small deformations δhk

1(x) of the four-surface subject to the condition that
they vanish at X3

δhk
1(x)|X3 = 0 , (14)

and lead to a new extremum of the Kähler action. These variations satisfy the equations

− [(∂2L/∂hk
,α∂hl

,β)δhl
,β ],α

+ (∂2L/∂hk
,α∂hl)δhl

,α

+ (∂2L/∂hk∂hl)δhl = 0 . (15)

These equations can be derived by expanding action to second order with respect to the
variation δhk

1 and regarding it as dynamical variable. Since these variations do not necessarily
vanish at infinity the above described first order term is in general non-vanishing for these
variations. The condition for absolute minimum states that this term vanishes:

δ∞S =
/+∞

a
(∂L/∂hk

,0)δh
k
1d3x = 0 . (16)

Here the lower bound of the substitution (denoted by a) corresponds to either to the limit
m0 → −∞ or to the intersection of the four-surface with the boundary of the light cone.

4. Minimization condition gives infinite number of conservation laws since the quantities appear-
ing in the minimization condition can be regarded as charges associated with the standard
current

Jn)α = (∂L/∂hk
,α)δhn)k

1 . (17)

and minimization condition states that corresponding charges are conserved:

∆Qn = 0 (18)

so that the corresponding symmetry is realized only in the sense that the values of the charges
are same at ∞ and a = 0 or a = −∞. The corresponding currents are not conserved:
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∂αJα 6= 0 . (19)

The charges are conserved (but not necessarily nontrivial) not only for the deformations
vanishing at X3 but also for the deformations vanishing at an arbitrary Diff4 transform of
X3. The point is that the deformations vanishing at Diff4 transform of X3 are obtained
from the deformations vanishing at X3 by replacing their argument with Diff4 transformed
argument. These deformations certainly satisfy the field equations of the second variation.
Furthermore, since Diff4 transformations can be assumed to approach identity at future and
past sufficiently rapidly, the values of the conserved charges are same as for the original
deformation and are therefore conserved.

The deformations satisfying the charge conservation obey linear superposition and in general
the resulting deformations do not vanish for any 3-surface belonging to X4. It is obvious how-
ever that this kind of deformations do not correspond to all possible deformations: there are
a lot of second variations of Kähler action, which do not obey charge conservation constraint.

5. The conserved charges might be vanishing. If the deformations of 4-surfaces approach to
zero at infinity fast enough then the charges at infinity vanish automatically. Also the
partial derivatives of the Lagrangian with respect to the time derivatives ∂0h

k might vanish
so fast that charges vanish asymptotically. In case of the light cone alternative this implies
that the charges associated with the intersection of the four-surface with light cone boundary
vanish and this in turn implies that Kähler function is invariant under these deformations
and therefore an additional degeneracy of the configuration space metric besides the four-
dimensional Diff degeneracy. We shall later find that these symmetries might correspond
to conformal symmetries (analogous to those of string models and conformal color gauge
invariance (the TGD counterpart of the local color symmetry (or rather degeneracy) in the
sense of QCD) and that a connection with the mathematical formalism of string models and
conformal field theories emerges.

6. Absolute minimum condition implies four-dimensional Diff degeneracy. The point is that
charges are conserved not only for X3 but also for the diffeomorphs of X3. Therefore X4

satisfies the absolute minimum conditions for the diffeomorphs of X3, too. The conclusion
is that Kähler function is Diff4 invariant and therefore Kähler metric is Diff4 degenerate.

4.2 Why non-local Kähler function?

Kähler function is nonlocal functional of 3-surface. Non-locality of the Kähler function seems to be
at odds with basic assumptions of local quantum field theories. Why this rather radical departure
from the basic assumptions of local quantum field theory? The answer is shortly given: configu-
ration space integration appears in the definition of the inner product for generalized Schrödinger
amplitudes and this inner product must be free from perturbative divergences. Consider now the
argument more closely.

In the case of finite-dimensional symmetric space with Kähler structure the representations of
the isometry group necessitate the modification of the integration measure defining the inner prod-
uct so that the integration measure becomes proportional to the exponent exp(K) of the Kähler
function [26]. The generalization to infinite-dimensional case is obvious. Also the requirement of
Kac-Moody symmetry leads to the presence of this kind of vacuum functional as will be found later.
The exponent is in fact uniquely fixed by finiteness requirement. Configuration space integral is
of the following form
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∫
S̄1exp(K)S1

√
gdX . (20)

One can develop perturbation theory using local complex coordinates around a given 3-surface in
the following manner. The (1, 1)-part of the second variation of the Kähler function defines the
metric and therefore propagagator as contravariant metric and the remaining (2, 0)− and (0, 2)-
parts of the second variation are treated perturbatively. The most natural choice for the 3-surface
are obviously the 3-surfaces, which correspond to extrema of the Kähler function.

When perturbation theory is developed around the 3-surface one obtains two ill-defined deter-
minants.

1. The Gaussian determinant coming from the exponent, which is just the inverse square root
for the matrix defined by the metric defining (1, 1)-part of the second variation of the Kähler
function in local coordinates.

2. The metric determinant

The matrix representing covariant metric is however same as the matrix appearing in Gaus-
sian determinant by the defining property of the Kähler metric: in local complex coordinates
the matrix defined by second derivatives is of type (1, 1). Therefore these two ill defined
determinants (recall the presence of Diff degeneracy) cancel each other exactly for a unique
choice of the vacuum functional!

Of course, the cancellation of the determinants is not enough. For an arbitrary local action one
encounters the standard perturbative divergences. Since most local actions (Chern-Simons term
is perhaps an exception [27]) for induced geometric quantities are extremely nonlinear there is no
hope of obtaining a finite theory. For nonlocal action the situation is however completely different.
There are no local interaction vertices and therefore no products of delta functions in perturbation
theory.

A further nice feature of the perturbation theory is that the propagator for small deformations
is nothing but the contravariant metric. Also the various vertices of the theory are closely related
to the metric of the configuration space since they are determined by the Kähler function so that
perturbation theory has beautiful geometric interpretation. Furthermore, since four-dimensional
Diff degeneracy implies that the propagator doesn’t couple to un-physical modes.

It should be noticed that divergence cancellation arguments do not necessarily exclude Chern
Simons term from vacuum functional defined as imaginary exponent of exp(ik2

∫
X4 J ∧ J). The

term is not well defined for non-orientable space-time surfaces and one must assume that k2

vanishes for these surfaces. The presence of this term might provide first principle explanation for
CP breaking. If k2 is integer multiple of 1/(8π) Chern Simons term gives trivial contribution for
closed space-time surfaces since instanton number is in question. By adding a suitable boundary
term of form exp(ik3

∫
δX3 J ∧A) it is possible to guarantee that the exponent is integer valued for

4-surfaces with boundary, too.
There are two arguments suggesting that local Chern Simons term would not introduce di-

vergences. First, 3-dimensional Chern Simons term for ordinary Abelian gauge field is known to
define a divergence free field theory [27]. The term doesn’t depend at all on the induced metric
and therefore contains no dimensional parameters (CP2 radius) and its expansion in terms of CP2

coordinate variables is of the form allowed by renormalizable field theory in the sense that only
quartic terms appear. This is seen by noticing that there always exist canonical coordinates, where
the expression of the Kähler potential is of the form

A =
∑

k

PkdQk . (21)
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The expression for Chern-Simons term in these coordinates is given by

k2

∫

X3

∑

k,l

PldPk ∧ dQk ∧ dQl , (22)

and clearly quartic CP2 coordinates. A further nice property of the Chern Simons term is that
this term is invariant under canonical transformations of CP2, which are realized as U(1) gauge
transformation for the Kähler potential.

4.3 Why Abelian Yang Mills action?

One can consider infinite number of possible definitions for the action defining Kähler function and
one can ask two questions. Why YM action? Why Kähler action? The answer to these questions
involves two key words: ”Weyl invariance” and ”Vacuum degeneracy of Kähler action”.

4.3.1 Weyl invariance

Weyl invariance (invariance of the action under local scalings of the metric) plays decisive role
in string theories so that it is natural to generalize Weyl invariance to d = 3 dimensions. Of
course, now this invariance cannot correspond to an actual symmetry realizable as configuration
space transformations: this purely formal invariance might be however closely related with the
hoped for invariance of the Kähler function under the conformal transformations of the light cone.
The problem is that there are no local Weyl invariants determined by the internal geometry of
3-manifold in 3 dimensions [28]. Chern Simons term for the induced gauge fields defines Weyl
invariant local functional of 3-surface, which however fails to be invariant with respect to four-
dimensional diffeomorphism group and is therefore excluded.

Chern Simons term associated with the boundary(!) of the four-manifold defines four-dimensional
Diff invariant but leads to extremely degenerate geometry. With respect to M4 degrees of freedom
metric would be completely degenerate. Furthermore, the term in question seems to be trivial for
3-surfaces without boundaries since it depends on 3-surface only via the boundary of the 3-surface.
In fact the earlier proposal for configuration space geometry was based essentially on this term and
was indeed found to lead to difficulties. The geometry defined by Chern Simons boundary term
would obviously define something resembling closely what might be called ”topological quantum
field theory.

There is however the possibility to define nonlocal functionals and indeed the absolute mini-
mum of Y M action defines Weyl invariant functional in the sense that the corresponding energy
momentum tensor is traceless. It is important to notice that dimension d = 4 is completely ex-
ceptional in the sense that Y M action is Weyl invariant only in dimension d = 4 so that TGD
approach provides an explanation for the dimension of space time.

4.3.2 Vacuum degeneracy of the Kähler action

The basic reason for choosing Kähler action is its enormous vacuum degeneracy, which makes long
range interactions possible (the well known problem of the membrane theories is the absence of
massless particles [29]). The Kähler form of CP2 defines symplectic structure and any 4-surface
for which CP2 projection is so called Lagrange manifold (at most two dimensional manifold with
vanishing induced Kähler form), is vacuum extremal due to the vanishing of the induced Kähler
form. More explicitly, in the local coordinates, where the vector potential A associated with the
Kähler form reads
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A =
∑

k

PkdQk . (23)

Lagrange manifolds are expressible in the following form

Pk = ∂kf(Qi) . (24)

where the function f is arbitrary. Notice that for the general Y M action surfaces with one-
dimensional CP2 projection are vacuum extremals but for Kähler action one obtains additional
degeneracy.

The basic consequence of this degeneracy is that the absolute minimum 4-surfaces for arbitrary
set of 3-surfaces are expected to be connected. Space-time is connected although 3-space is not!
This in turn implies long range correlations between disjoint 3-surfaces and therefore long range
interactions.

To see how this is achieved notice that the union of individual single particle 4-surfaces is
certainly an extremal of the Kähler action. It is however evident that one can connect the disjoint
4-surfaces using vacuum 4-surfaces so that they form a connected 4-surface with same action as the
original set of disjoint 4-surfaces. Furthermore, Kähler action is not positive definite for 4-surfaces
with M4 signature: Kähler electric fields give negative contribution to action. To lower the action
one can deform the surface so that Kähler-electric fields are generated. Thus it is clear that the
minimum of Kähler action must be connected 4-surface.

Vacuum degeneracy has several important consequences.

1. The construction of the metric in N-particle sector differs in no essential manner from that
in 1-particle sector. Metric describes naturally the interactions of 3-surfaces. The deviation
of the actual Kähler function from the sum of the single particle Kähler functions can be
regarded as ”interaction” term in the action.

2. Metric is not merely a direct sum of individual metrics for 3-surfaces and in particular there
is only single center of mass term in action. This makes it possible to avoid spin statistics
difficulty encountered, when N-particle configuration space is metrically cartesian product
of single-particle configuration spaces: in this case the spinors of the configuration space
are tensor products of single particle spinors. In center of mass degrees of freedom tensor
product structure implies a catastrophe: one obtains integer spin fermions.

3. The metric and the exponent exp(K) of the Kähler function defining vacuum functional gives
rise to long range interactions most naturally identifiable as gravitation and electromagnetic
interaction. In the absence of vacuum degeneracy extremals would be unions of disjoint
4-surfaces and the interactions would reduce to contact interactions.

4. The presence of long range interactions are characteristic for statistical systems at critical
point having the property that the dynamics is renormalization group invariant. In the third
part of the book we will show that the assumption that Kähler action is renormalization
group invariant has extremely powerful consequences: using as input only fine structure
constant and Weinberg angle one can predict the values of various couplings at high and low
energy limits plus the mysterious number 10−19 describing the ratio of elementary particle
and Planck mass scales. In addition the value of the Kähler coupling should be unique as a
fixed point of the coupling coupling constant evolution (or as the counter part of the critical
temperature) so that the theory becomes unique.
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5. In the third part of the book we shall show that the removal of the degeneracy is achieved
by the generation of long range 1/r2 Kähler-electric fields: the topological condensation of
particle like 3-surface (particle like 3-surface is ”glued” to background 3-surface) deforms the
background space time so that Reissner-Nordström type spherically symmetric metric results
in asymptotic regions. The generation of Kähler electric fields explains Higgs mechanism
classically (particle mass results as Kähler field energy) and color confinement (the generation
of Kähler electric flux tubes corresponds to generation of color electric flux tubes since color
field is proportional to Kähler field).

6. It turns also that vacuum extremals of the Kähler action can be regarded as idealized space
times obtained by smoothing out the various topological details of the actual space time and
by describing their presence in terms of Yang Mills currents and energy momentum tensor.
In particular, Robertson Walker cosmology corresponds to this kind of idealized space time.

5 Four-dimensional Diff invariance

We have already proved that the proposed definition of the Kähler function leads to Diff4 degen-
eracy and -invariance of the Kähler metric: the essential point is that the minimizing four-surface
is assumed to be same for all Diff4 related 3-surfaces belonging to the minimizing four-surface
X4(X3) of a given 3-surface X3. The simplest manner to guarantee X4(Y 3) = X4(X3) for all
Y 3 diffeo-related to X3 at X4(X3) is to assume that standard X3 to belong to the ’light cone
boundary’ δM4

+×CP2 and define X4(Y 3) = X4(X3) for all diffeo-related surfaces Y 3. This would
mean the restriction of absolute minimization of Kähler action to surfaces at light cone boundary.
An alternative possibility is to allow absolute minimization for any surface Y 3 in H and to show
that this definition is equivalent with manifestly Diff4 invariant definition. Four-dimensional Diff
invariance has several far reaching consequences to be discussed briefly in the sequel.

5.1 Resolution of tachyon difficulty

In TGD as in string models the tachyon difficulty is potentially present: unless the time like
vibrational excitations possess zero norm they contribute tachyonic term to the mass squared
operator of Super Kac Moody algebra. This difficulty is familiar already from string models
[24, 25].

The degeneracy of the metric with respect to the time like vibrational excitations guarantees
that time like excitations do not contribute to the mass squared operator so that mass spectrum
is tachyon free. It also implies the decoupling of the tachyons from physical states: the propagator
of the theory corresponds essentially to the inverse of the Kähler metric and therefore decouples
from time like vibrational excitations. The experience with string model suggests that if metric is
degenerate with respect to diffeomorphisms of X4(X3) there are indeed good hopes that time like
excitations possess vanishing norm with respect to configuration space metric.

5.2 Absence of Diff anomalies

The four-dimensional Diff invariance of the Kähler function implies that Diff invariance is guar-
anteed in the strong sense since the scalar product of two Diff vector fields given by the matrix
associated with (1, 1) part of the second variation of the Kähler action vanishes identically. This
property gives hopes of obtaining theory, which is free from Diff anomalies: in fact loop space
metric is not Diff degenerate and this might be the underlying reason to the problems encountered
in string models [24, 25].

This argument can be made more precise. The Diff degeneracy of the Kähler form implies that
in general it is not possible to define all symmetry transformations as canonical transformations
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since this would necessitate the following representation of the vector field jk
A generating the

isometry

jk
A = Jkl∂lH

A . (25)

In general this representation is not expected to exist since Jkl is degenerate. Representation can
hold only modulo some superposition of Diff generators. Diff itself affords an example of symmetry
transformations of this kind.

This result implies that the method yielding Abelian extension in TGD approach yields neces-
sarily a trivial Abelian extension in the case of Diff Lie-algebra and the reason is essentially that
the matrix elements of the Kähler form between Diff generators vanish and one cannot represent
Diff transformations as Hamiltonian flows. This in turn suggest the absence of Diff anomalies in
TGD approach.

5.3 Complexification of the configuration space

Four-dimensional Diff degeneracy turns out to play a fundamental role in the complexification
of the configuration space. The point is that Diff4 invariance effectively reduces the imbedding
space from M4

+ × CP2 to δM4
+ × CP2. Light cone boundary in turn is metrically 2-dimensional

Euclidian sphere allowing infinite-dimensional group of conformal symmetries and Kähler structure.
Therefore one can say in certain sense configuration space metric inherits the Kähler structure of
S2 ×CP2. Furthermore, this mechanism works in case of four-dimensional Minkowski space only:
higher-dimensional spheres do not possess even Kähler structure.

5.4 Contravariant metric and Diff4 degeneracy

Diff degeneracy implies that the definition of the contravariant metric, which corresponds to the
propagator associated to small deformations of minimizing surface is not quite straightforward. We
believe that this problem is only technical. Certainly this problem is not new, being encountered
in both GRT and gauge theories [30, 31]. In TGD the solution of the problem is provided by the
existence of infinite-dimensional isometry group. If the generators of this group form a complete
set in the sense that any vector of the tangent space is expressible as as sum of these generators
plus some zero norm vector fields then one can restrict the consideration to this subspace and in
this subspace the matrix g(X, Y ) defined by the components of the metric tensor indeed indeed
possesses well defined inverse g−1(X, Y ). This procedure is analogous to gauge fixing conditions
in gauge theories and coordinate fixing conditions in General Relativity.

5.5 Diff4 invariance and generalized Schrödinger amplitudes

Four-dimensional Diff invariance can be generalized so that it applies at the level of physical states
also. Generalized Schrödinger amplitudes are Diff4 invariant. This in fact fixes not only classical
but also quantum dynamics completely. The point is that the values of the configuration space
spinor fields must be essentially same for all Diff4 related 3-surfaces on the orbit X4 associated
with a given 3-surface. This means that the time development of Diff4 invariant configuration
spinor field is completely determined by its initial value at the moment of the big bang!

5.6 Two alternative definitions of classical space time

TGD approach suggests two alternative definitions of the classical space-time either

1. as the absolute minimum of the Kähler action or
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2. as an orbit of possibly Kähler charged ’massless’ particle in configuration space. In the
following we shall consider these alternative and possibly equivalent definitions in more detail.

5.6.1 Absolute minimum of the Kähler action as classical space-time

We have already found that Kähler function associates with a given 3-surface a unique space time.
In particular, one can associate definite conserved quantitities with this space time. In order to
obtain non-vacuum space-times with nontrivial conserved quantities one must however assume
that 4-surface extends to infinity in future direction of M4

+ unless 4-surface contains singularities
(the orbit of 3-surface degenerates to point). Note that one must also assume that the intersection
of the four-surface with the boundary of the light cone is not subject to variational conditions
since this would imply the vanishing of four momentum densities. Of course, one could consider
also the possibility that space-times become vacuum space-times at the moment of big bang and
that non-vanishing four-momentum densities are generated only later: negative energies would be
present however in some form in this scenario.

It is indeed easy to see that for 4-surfaces with finite M4 projection conserved charged are
indeed trivial. The possible dynamically generated boundary components have vanishing con-
served currents by field equations so that in M4 the conserved quantities associated with 3-surface
are necessarily vanishing! This doesn’t imply the vanishing of conserved quantities for individ-
ual 3-surfaces, when X4 contains several components: only their sum vanishes. This result is
unsatisfactory if we want to interpret 4-surface as a classical space time.

That minimization principle implies non-vacuum space-times is suggested by the following ar-
gument. Kähler action is not positive definite: the generation of Kähler electric fields gives negative
contribution to the action and positive contribution to the energy since the energy density associ-
ated with any Kähler field is positive definite quantity. Therefore we expect that the minimum of
the action tends to be negative and its is clear that the larger the size of the space time the better
the possibilities to develop Kähler electric fields to gain negative action. Therefore space-times are
most probably of infinite size and non-vacuum.

There is a counter argument against the infinite size of minimizing space-time surface. There
is the danger that the value of the Kähler function diverges for space-times of infinite size so that
one should pose the finite size of the space-time as consistency condition, which in turn would
imply that all absolute minima of the Kähler action are vacuum space times. There are however
delicacies related to this argument.

1. The second variation of the Kähler function can be completely well defined quantity also,
when the value of the Kähler action diverges.

2. The vacuum functional of the theory is the exponent exp(K) of the Kähler action and
vanishes for 3-surfaces corresponding to the infinite value of the Kähler function: therefore
these surfaces decouple from dynamics and one perhaps avoids the potential mathematical
difficulties related to them. In fact, the vacuum functional might be finite only for very
restricted types of 3-surfaces so that classical 3-space is unique to a very high degree!

3. The fact that the generation of too strong Kähler electric fields leads to Euclidian metric
and therefore to a positive contribution to the Kähler action might serve as a regulating
mechanism keeping Kähler action finite. In any case, for physically interesting 3-surfaces the
space time should become for large values of M4

+ time a zero action extremal of the Kähler
function. In fact, the elementary particles can be regarded as Euclidian regions of space time
as will be found in the third part of the book.

Kähler function associates to every 3-surface unique space-time surface and one might ask how
to sharpen the definition of the classical space-time. The first thing to notice is that one can
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associate to each 3-topology a unique space-time by requiring that vacuum functional and thus
Kähler function is maximum for this 3-space. Furthermore, one could define the ”physical space-
time” as space-time associated with the 3-surface, which corresponds to an absolute maximum of
Kähler function allowing the 3-topology to be arbitrary. Also more refined definitions taking into
account the dependence of the generalized Schrödinger amplitude on 3-surface are possible.

5.6.2 Classical space-time as null geodesic in configuration space

Kähler geometry provides also alternative definitions of the classical space-time:

1. Null geodesics of the configuration space are perhaps the simplest candidates for the classical
space-time one can imagine. If Map(X3,M4 × SU(3)) were (it is not!) an exact symmetry
geodesic lines correspond to one-parameter subgroups of this group and classical theory would
be exactly solvable. Despite this one can associate an infinite number of conserved charges
to the orbit of 3-surface corresponding to the generators of the isometry group. This implies
that geodesics certainly cannot correspond to the extremals of Kähler function, which is not
invariant under isometries (metric would be completely degenerate if this were the case).

The equations for null geodesic reduce to the condition expressing one parameter subgroup
property plus the mass shell condition for a ”massless” particle

ṁk = pk ,

Ẋk = cAjAk ,

p2 −GklcAcBjAkjBl = 0 . (26)

Here p2 denotes the mass squared associated with the geodesic motion in M4 cm degrees of
freedom. JAk denotes the generator of the isometry group and the quantities cA are constant
coefficients appearing in the representation of the tangent vector of the geodesic line as a
superposition of gauge group generators.

Using the isometry invariance of the inner products of the isometry generators one obtains
the expression for the mass squared the expression

p2 = GABcAcB . (27)

The quantities GAB are constant with respect to local gauge transformations although they
depend on the point of the configuration space. Semiclassical quantization condition suggests
discrete values for the mass squared operator determined by the Kac Moody symmetry so
that classical space-times correspond directly to Kac Moody representations.

2. Null geodesics are not the most general orbits one can imagine for a massless particle in
configuration space. The Abelian extension of the isometry group to Kac-Moody group
turns out to correspond to the coupling of the configuration space spinors to the Kähler
potential and this suggests that classical equations of motion contain additional Lorentz
force term describing the interactions with the Maxwell field defined by the Kähler form

Ẍk + { k
l m}Ẋ lẊm = kJk

mẊm . (28)

This equation is consistent with the generalized masslessness condition, which implies the
previous expression for the mass squared operator. It is not clear whether one can solve
equations of motion exactly in this case.
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Are the proposed two definitions of classical space time in fact equivalent? That this might be
the case is supported by the following arguments:
i) The presence of the Kähler force term implies the loss of the infinite number of the conserved
quantities: only Lorentz and color quantum numbers associated with cm degrees of freedom are
conserved.
ii) The absolute minima of Kähler action are indeed null lines of the configuration space since the
distance between the intersection Y 3 of X4 with light cone boundary and any diffeo-related surface
on X4 is vanishing by four-dimensional Diff degeneracy.

If the equivalence indeed holds true then the minimization problem of the Kähler action becomes
equivalent to the study of orbits of massless Kähler charged particles in configuration space.

6 Some properties of Kähler action

In this section some properties of Kähler action and Kähler function are discussed in light of
experienced gained during about 15 years after the introduction of the notion.

6.1 Consequences of the vacuum degeneracy

The vacuum degeneracy already discussed is perhaps the most characteristic feature of the Kähler
action. Although it is associated with the extremals rather than absolute minima of Kähler action,
there are good reasons to expect that it has deep consequences concerning the structure of the
theury.

6.1.1 Approximate canonical and Diff(M4) invariances

Vacuum extremals have diffeomorphisms of M4
+ and M4

+ local canonical transformations as sym-
metries. For non-vacuum extremals these symmetries leave induced Kähler form invariant and only
induced metric breaks these symmetries. Canonical transformations of CP2 act on the Maxwell
field defined by the induced Kähler form in the same manner as ordinary U(1) gauge symmetries.
They are however not gauge symmetries since gauge invariance is still present. In fact, the construc-
tion of the configuration space geometry relies on the assumption that canonical transformations
of δM4

+ × CP2 which infinitesimally correspond to combinations of M4
+ local CP2 canonical and

CP2-local M4
+ canonical transformations act as isometries of the configuration space.

The fact that CP2 canonical transformations do not act as gauge transformations means that
U(1) gauge invariance is effectively broken. This has non-trivial implications. The field equations
allow purely geometric vacuum 4-currents not possible in Maxwell’s electrodynamics. The existence
of longitudinal scalar wave pulses carrying electric field parallel to the direction of propagation and
claimed by Tesla for more than century ago are a second key implication of the symmetry.

6.1.2 CP2 type extremals and conformal invariance

There is also a second kind of vacuum degeneracy, which is relevant to the elementary particle
physics. The so called CP2 type extremals are warped imbeddings X4 of CP2 to H such that
Minkowski coordinates are functions of a single CP2 coordinate, and the one-dimensional projection
of X4 is random light like curve. The conditions stating light likeness are equivalent with the
Virasoro conditions of string models and this actually led to the path leading to the realization
that conformal invariance is basic symmetry of TGD. These extremals have non-vanishing action
but vanishing Poincare charges.
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6.1.3 Spin glass degeneracy

Vacuum degeneracy means that all surfaces belonging to M4
+×Y 2, Y 2 any Lagrange sub-manifold

of CP2 are vacua irrespective of the topology and that canonical transformations of CP2 generate
new surfaces Y 2. If absolute minima are obtained as small deformations of vacuum extremals,
one expects therefore enormous ground state degeneracy, which could be seen as 4-dimensional
counterpart of spin glass degeneracy. This degeneracy corresponds to the hypothesis that config-
uration space is a union of symmetric spaces labelled by zero modes which do not appear at the
line-element of the configuration space metric.

Zero modes define what might be called the counterpart of spin glass energy landscape and
the maxima Kähler function as a function of zero modes define a discrete set which might be
called reduced configuration space. Spin glass degeneracy turns out to be crucial element for
understanding how macro-temporal quantum coherence emerges in TGD framework.

6.2 Some implications of the classical non-determinism of Kähler action

The classical non-determinism has turned out to be the most decisive property of Kähler action,
and only the construction of TGD inspired theory of consciousness has gradually revealed its
implications.

6.2.1 Generalized quantum gravitational holography

The original naive belief was that the construction of the configuration space geometry reduces to
δH = δM4

+×CP2. An analogous idea in string model context became later known as quantum grav-
itational holography. The basic implication of the vacuum degeneracy is classical non-determinism,
which is expected to reflect itself as the properties of the Kähler function and configuration space
geometry. Obviously classical non-determinism challenges the notion of quantum gravitational
holography.

One could try to believe that the generalization of the notion of 3-surface is enough to get rid of
the degeneracy and save quantum gravitational holography in its simplest form. This would mean
that one just replaces space-like 3-surfaces with ”association sequences” consisting of sequences of
space-like 3-surfaces with time like separations as causal determinants. This would mean that the
absolute minima of Kähler function would become degenerate: same space-like 3-surface at δH
would correspond to several association sequences with the same value of Kähler function.

It seems that life is more complex than this. CP2 type extremals have Euclidian signature of
the induced metric and therefore CP2 type extremals glued to space-time sheet with Minkowskian
signature of the induced metric are surrounded by light like surfaces X3

l , which might be called
elementary particle horizons. The non-determinism of the CP2 type extremals suggests strongly
that also elementary particle horizons behave non-deterministically and must be regarded as causal
determinants having time like projection in M4

+. Pieces of CP2 type extremals are good candidates
for the wormhole contacts connecting a space-time sheet to a larger space-time sheet and are also
surrounded by an elementary particle horizons and non-determinism is also now present. That
this non-determinism would allow the proposed simple description seems highly implausible.

Even this is not enough. The assumption that space-times are 4-surfaces resolves the energy
problem of general relativity but also implies that negative energies are possible classically since
the time orientation of the 4-surface determines the sign of the energy. This means the possibility
of classical pair creation for space-time sheets having opposite signs of classical energy. A good
guess is that light like surfaces X3

l ×CP2 can act as causal determinants besides the boundary of
the light cone. This destroys all hopes about the reduction of physics to the light cone boundary.

These causal determinants X3
l however share metric 2-dimensionality as a common element.

This implies conformal and even symplectic structure and generalized conformal invariance. It
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is this symmetry which makes it possible to generalize the construction of configuration space
geometry to take into account the complications caused by the classical non-determinism.

6.2.2 Classical non-determinism saves the notion of time

Although classical non-determinism represents a formidable mathematical challenge it is a must
for several reasons. Quantum classical correspondence, which has become a basic guide line in
the development of TGD, states that all quantum phenomena have classical space-time correlates.
This is not new as far as properties of quantum states are considered. What is new that also
quantum jumps and quantum jump sequences which define conscious existence in TGD Universe,
should have classical space-time correlates: somewhat like written language is correlate for the
contents of consciousness of the writer. Classical non-determinism indeed makes this possible.
Classical non-determinism makes also possible the realization of statistical ensembles as ensembles
formed by strictly deterministic pieces of the space-time sheet so that even thermodynamics has
space-time representations. Space-time surface can thus be seen as symbolic representations for
the quantum existence.

In canonically quantized general relativity the loss of time is fundamental problem. If quantum
gravitational holography would work in the most strict sense, time would be lost also in TGD since
all relevant information about quantum states would be determined by the moment of big bang.
More precisely, geometro-temporal localization for the contents of conscious experience would not
be possible. Classical non-determinism together with quantum-classical correspondence however
suggests that it is possible to have quantum jumps in which non-determinism is concentrated in
space-time region so that also conscious experience contains information about this region only.

6.3 Configuration space geometry, generalized catastrophe theory, and
phase transitions

The definition of configuration space geometry has nice catastrophe theoretic interpretation. To
understand the connection consider first the definition of the ordinary catastrophe theory [32].
In catastrophe theory one considers extrema of the potential function depending on dynamical
variables x as function of external parameters c. The basic space decomposes locally into cartesian
product E = C×X of control variables c, appearing as parameters in potential function V (c, x) and
of state variables x appearing as dynamical variables. Equilibrium states of the system correspond
to the extrema of the potential V (x, c) with respect to the variables x and in the absence of
symmetries they form a sub-manifold of M with dimension equal to that of the parameter space
C. In some regions of C there are several extrema of potential function and the extremum value
of x as a function of c is multivalued. These regions of C ×X are referred to as catastrophes. The
simplest example is cusp catastrophe (see Fig. 6.3) with two control parameters and one state
variable.

In catastrophe regions the actual equilibrium state must be selected by some additional physical
requirement. If system obeys flow dynamics defined by first order differential equations the catas-
trophic jumps take place along the folds of the cusp catastrophe (delay rule). On the other hand,
the Maxwell rule obeyed by thermodynamic phase transitions states that the equilibrium state
corresponds to the absolute minimum of the potential function and the state of system changes in
discontinuous manner along the Maxwell line in the middle between the folds of the cusp (see Fig.
6.3). As far as discontinuous behavior is considered fold catastrophe is the basic catastrophe: all
catastrophes contain folds as there ’satellites’ and one aim of the catastrophe theory is to derive
all possible manners for the stable organization of folds into higher catastrophes. The fundamental
result of the catastrophe theory is that for dimensions d of C smaller than 5 there are only 7
basic catastrophes and polynomial potential functions provide a canonical representation for the
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catastrophes: fold catastrophe corresponds to third order polynomial (in fold the two real roots
become a pair of complex conjugate roots), cusp to fourth order polynomial, etc.

Consider now TGD counterpart of this. The most obvious identification for the parameter
space C would be as the space of all 3-surfaces in H = M4

+ × CP2. In order to get rid of the
difficulties related to Diff4 invariance one must however restrict the consideration to 3-surfaces
belonging to Ha : the set of 3-surfaces of M4

+ × CP2 with constant M4
+ proper time coordinate.

The counterpart of the total space E = C × X can be identified as the space of the solutions of
Euler Lagrange equations associated with Kähler action (one could consider all 4-surfaces but this
is not necessary) and decomposes only locally into Cartesian product. Intuitively the space X
corresponds to the time derivatives for the variables specifying the space X and in Hamiltonian
formalism to canonical momenta. If the initial value problem is well defined the values of C and
X coordinates specify the extremum uniquely. In TGD this is not in general true as the vacuum
degeneracy of Kähler action demonstrates.

Potential function corresponds to Kähler action restricted to the solutions of Euler Lagrange
equations. Catastrophe surface corresponds to the four-surfaces found by extremizing Kähler
action with respect to to the variables of X (time derivatives of coordinates of C specifying X3 in
Ha ) keeping the variables of C specifying 3-surface X3 fixed. Extremization with respect to time
derivatives implies a phenomenon analogous to the Bohr quantization since canonical momenta
cannot be chosen freely as in the ordinary initial value problems of the classical physics. When
catastrophe occurs there are several extremizing 4-surfaces going through the given 3-surface:
otherwise one obtains just the sought for absolute minimum surface.

The requirement that Kähler function corresponds to absolute minimum is just Maxwell’s
rule in infinite-dimensional context and implies that phase transition type catastrophic quantum
jumps are typical for TGD:eish Universe. Cusp catastrophe provides a simple concretization of the
situation. The set M (’Maxwell set’) of the critical 3-surfaces corresponds to the Maxwell line of
the cusp catastrophe and forms codimension one set in configuration space. For 3-surfaces near to
the Maxwell set M small one parameter deformation in the direction normal to it can induce large
deformation of the 4-surface associated with it. This implies initial value sensitivity with respect
to the coordinate Xn associated with the normal direction. Kähler function itself is continuous
on Maxwell surface and mathematical consistency requires that also Kähler metric is continuous
on Maxwell surface. A good example of a catastrophic jump is provided by a topology changing
quantum jump (3-surface decays to two disjoint 3-surfaces) identifiable as 3-particle vertex.

The present situation differs from the ordinary catastrophe theory in several respects.

1. The parameter space C is infinite-dimensional so that there seems to be no hope of having
finite classification for catastrophes in TGD:eish Universe. Of course, all lower-dimensional
catastrophes are expected to be present in TGD, too.

2. Kähler action possesses vacuum degeneracy and one cannot exclude the possibility that the
absolute minima of the Kähler action are degenerate: this implies further modifications to
the standard picture of catastrophe theory.

3. Maxwell rule follows as a theorem in Quantum TGD whereas in ordinary catastrophe theory
delay rule (jumps takes place along the folds) follows as a theorem. The latter implies that
the description of phase transitions is not possible using the catastrophe theory associated
with flows. These observations suggests that classical dynamics (for instance the classical
dynamics associated with Kähler action) obeys delay rule whereas quantum dynamics obeys
Maxwell rule and that the phenomena of super cooling and super heating are related to
classical dynamics and ordinary phase transitions are induced by quantum fluctuations.

The existence of the catastrophes is implied by the vacuum degeneracy of the Kähler action.
For example, for pieces of Minkowski space in M4

+×CP2 the second variation of the Kähler action
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vanishes identically and only the fourth variation is non-vanishing: these 4-surfaces correspond
to the dip of the cusp catastrophe. There are also space-time surfaces for which second variation
is non-vanishing but degenerate and a hierarchy of subsets in the space of extremal 4-surfaces
with decreasing degeneracy of the second variation defines the boundaries of the projection of
the catastrophe surface to the space of 3-surfaces. The space-times for which second variation is
degenerate contain as subset the critical and initial value sensitive absolute minimum space-times.

Figure 3: Cusp catastrophe
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